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ABSTRACT

This paper compares reported dynamic analyses for evaluating the

steady-state response and stability of free-piston Stirling engine

(FPSE) systems. Various analytical approaches are discussed to

provide guidance on their salient features. Recommendations are

made in the recommendations remarks for an approach which

captures most of the inherent properties of the engine. Such an

approach has the potential for yielding results which will closely

match practical FPSE-Ioad systems.

I. INTRODUCTION

Historically, the dynamic analyses of free-piston Stirling engine

(FPSE) systems have focussed on two areas. Most of the analyses

have emphasized the use of Laplace transformation and classical

control techniques to determine the engine operating frequency and

other dynamic parameters, notably, the piston-displacer oscillation

amplitudes and their relative phase angles [1,2,3]. The other area of

activity has been the determination of the conditions for engine

stability by means of Laplace transformation [4] or the state-space

technique [5,6]. In one instance [7], the operating frequency, piston

and displacer amplitude, and other thermodynamic state variables are

found by a linear harmonic analysis (LHA). This technique

represents periodic variables with harmonic functions. The underlying

reason for the bulk of the dynamic analyses is the prediction of the

FPSE performance. The foregoing activities are essential to the

design of a particular Stirling engine, and can enhance one's

understanding of the behavior of FPSE's.

emphasize the engine, with only allusions to its connected load. In

some cases, the system consists of a single cylinder engine with a

connected but unspecified load [1,5,6,7] modeled as a dashpot. In

other instances, the system is a FPSE driving a linear alternator [2,3].

In reference [2], a connected load is implied but not explicitly stated.

If the sole desire is the calculation of the engine dynamic parameters

which impact the thermodynamic analysis, the system is usually

confined to the engine itself [4].

Generally, the dynamic analysis of the FPSE system is expedited by

assumptions which facilitate the solution of the system equations.

11-2. ASSUMPTIONS

The following simplifying assumptions are commonly found in the

analyses:

(1). Schmidt's thermodynamic analysis is assumed. Hence, (a) the

piston and displacer motions are sinusoidal, as is the resulting

working space pressure; (b) the working fluid obeys the ideal gas law

and undergoes isothermal expansion and compression.

(2). The system can be studied via linear analysis methods since (a)

the working gas behaves like a linear spring and, (b) the connected

load is assumed to be nearly linear.

(3)_ The gas pressure in the working space (expansion and

compression spaces, heater,regenerator and cooler volumes - Fig 1)

is spatially constant but time variant.

This paper reviews the existing literature on the dynamic analysis of

FPSE systems. The purpose is to discuss the various analytical

methods used, and provide guidance on their relative merits. The

recommendations state the approach and salient features of the

FPSE-Ioad systems which will yield the most practical results, in a

most expeditious manner.

II. ANALYTICAL FORMULATIONS

The discussions here pertain to the underlying assumptions and the

equations of motion used for the dynamic analysis of FPSE's. For the

papers reviewed and in this publication, the word "system" denotes a

FPSE connected to a load. Where possible, the nature of the load is
identified.

1I-1. FPSE SYSTEMS

All the analyses found in the available literature on I"T'SE dynamics

(4). The average working space pressure is balanced by the average

pressure of the bounce space and other gas sprin_. Thus, the

average force on the power piston, displacer and cylinder casing are

zero. Consequently, the average positions of these elements are

stationary.

II-3. EQUATIONS OF MOTION

A schematic of a single cylinder FPSE used by Rauch [1] is shown in

Fig. 1. The dynamic equivalent model is illustrated in Fig. 2. The

FPSE is represented as two masses, namely, the displacer (subscript

'D') and the power piston (subscript 'P'), which are coupled by

gaseous springs (denoted 'K') and dampers (denoted 'C'). Unlike Fig.

2 in reference [1], an additional damping coefficient which couples the

piston and displacer in the compression space is included here for

completeness. Positive displacements of the piston and displacer are

considered upward motions from their static equilibrium positions in

Fig. 2.



Thedynamics must be self-excited via the thermodynamics so as to

induce the engine operation. That is, the dynamics of the piston and

displacer motions must generate a pressure force which maintains

their steady, periodic motions.

The piston, displacer and casing are three key elements of the FPSE.

A sinusoidal steady oscillation is commonly assumed for these

elements. Urieli and Berchowitz [9] show that operating the FPSE at

a frequency in excess of the natural frequency of any of its elements

will result in a reduced amplitude of oscillation for that element. One

mode of FPSE operation is the removal of power out of the casing.

For this mode the operating frequency is much greater than the

natural frequency of the piston. Another mode is the removal of

power from the piston. This mode is common for electrical output

applications in which an alternator "load" is installed between the

piston and casing. In this ease, the operating frequency is greater

than the natural frequency of the casing. This mode of operation is

preferred for space power applications (and many others), due to the

simplification obtained by a relatively heavier and, hence, stationary

casing.

Based on the foregoing discussions, only two degrees of freedom are

required to describe the dynamics of the FPSE. Hence, regarding Fig.

2, :he general equations of motion are summarized in Eq. (1):

[MIIXI+[CI[XI ÷[KIIXl=IF(t)1 (1)

"l'hc matrices [M],[C] and [K] represent the system masses, damping

and stiffness coefficients external to the thermodynamic cycle. The

forcing vector [F(t)] is the sum of the forces due to thermodynamic

cycle pressure, [Fa.(t)], and appropriate time dependent external

forces, [FE(t)], on the piston and displacer. This is shown in Eq 2:

[F(t)] =[FT(t)] +IFE(t)] (2)

The thermodynamic forces can be represented as functions of the

state variables [X] and IX], which represent the displacements and

their time derivatives, respectively, for the piston and displacer, as

shown in Eq. 3:

[Fa.(t)]=-lCr]lX I-[KrIIX l (3)

where [CT] and [K1. ] are, respectively, the thermodynamic damping

and stiffness matrices which may be nonlinear. Negative signs

associated with [KT] and [Ca. ] indicate the restoring nature of [Fa.(t)].

The matrix [CT] is, in most analyses, given only passing attention. It

represents the heat exchangers flow Io¢,ses which, in many cases, are

the dominant engine losses. Further, it may be shown that this

damping is a non-linearity which stabilizes the amplitude of oscillation

[41.

The IKT1 matrix represents the dominant pressure forces acting on

the piston and displacer. It may be written in terms of the piston

area (Ap), displacer rod area (AR) and the partials of pressure with

respect to positions, as:

fAR OP/i_XD , AR OP/OXP] rKDDT, KDPT1[KTI " p oP/OXo A e 0P/OXpJ " LKeDa., Kppa.J (4)

where KDD T and Kpp T are the total thermodynamic stiffness

coefficients of the displacer and piston, respectively. The term KDp T

is the thermodynamic stiffness on the displacer due to the piston

motion. Similarly, KpD. r is the thermodynamic stiffness on the piston

due to the displacer motion.

The terms in [KT] are functions of engine geometry, operating mean

pressure and the expansion to compression space temperature ratio,

Te/"F c. Generally, these stiffness coefficients are uniquely different

from each other. In particular, the coupling terms KDt, T and KpD T

are not equal, making [KT] asymmetric. This asymmetry is the source

of self-excitation in the practical engine. However, when the working

space temperatures are equal, that is Te/"I" c is unity, the coupling

terms Kop T and KpD T are equal and [KT] becomes symmetric.

The thermodynamic stiffness matrix [KT] may be split into an

isothermal term [KTi ] and a temperature ratio dependent term

[Ka.t]. Thus, Eq. (3) becomes:

[Fa.(t)]= -[CT][XI-IKa. i .,,-Ka.t.][X l (5)

The [KTi ] matrix is symmetric and does not contribute to the self-

excitation. The [KTt.] matrix is asymmetric, retains the temperature

ratio dependence, and is the primary contributor to the self-excitation.

There are several wa_, of treating the thermodynamic force [FT(t)].

One approach is to combine the thermodynamic matrices [Ka.] and

[CT] with their external counterparts [K] and [C] on the left hand side

(LHS) of Eq. (1), which becomes:

[MI[f(]÷[C +Ca.lfX]÷[K ÷Ka.I[X]=[FE(t)I (6)

A second approach is to model the thernlodynamic cycle as a forcing

term in the fight hand side (R/IS) of Eq. (1). Combining Eqs. (1)

and (2) yields Eq. (7):

[MI[X] +[C][X] +[KIIX] =[FT(t)]+[FE(t)] (7)

In this case Eq. (3) must also be satisfied for the complete solution.

A third method is to split the thermodynamic model, in which case

[Ca. ] and [KTi ] terms of Eq. (5) are combined with [C] and [K],

respectively, on the LHS of Eq. (1). The [KTt.] term remains on the

RHS of (1) as a forcing term. Eq. (1) then becomes,

[M]IXI+[C*CTIIXI *[K*Ka./IIXI=IFpT(t)I *[FE(t)I (8)

where the force representing the relation between the thermodynamic

cycle and piston and displacer motions, Eq. (9), must also be satisfied.



[FpT(t)]- -[KTtl[X ] (9)

Various forms of Eqs. (6), (7) or (8) are used in the literature. The

equation used and unique assumptions of each reference are

discussed below.

Rauch [1] splits the thermodynamic model and, thus, uses Eq. (8).

The cylinder is assumed to be stationary. The engine modeled has no

external springs. This implies that the elements in the expanded

stiffness matrix of Eq. (10) are solely the isothermal counterparts of

[KTd.

-Kc

The common, off-diagonal term Kc represents the displacer-piston

coupling spring stiffness. The terms K D and Kp, respectively, denote

the displacer and piston springs to ground. Note that the diagonal

terms are the sum of KD and K C for the displacer, and Kp and KC for

the piston.

Reference [1] correctly points out that the elements of the total

damping matrix [C+ C1. ] are dependent on both the engine-connected

load and internal windage. The damping dissipates the energy input

to the piston and displacer. Maximization of system efficiency

requires minimization of damping other than that due to the load.

Reference [1] embeds the effects of connected load in the piston

damping coefficient, Cp. Thus the damping matrix may be expanded

to Eq. (11).

[c.c ]o L-c¢ ,cp (11)

To simplify the analysis, reference [1] neglects the coupling term C c

in the damping matrix. The forcing terms of (8) are assumed to be

entirely due to the thermodynamics. Therefore, [FE(t)] is zero. The

forcing vector [FpT(t)] is expressed in terms of a time dependent

pseudo-pressure acting on the piston and displacer rod areas as shown

in Eq. (12):

[/]AR

[FP T(t)] = ]A_I PP T(t) (12)
k--rj

The constraint of Eq. (9) on the equations of motion requires

equating the RHS of Eqs. (9) and (12). This is not explicitly evident

in reference [1].

Unlike reference [1], Redlich and Berchowitz [2] incorporate the

Schmidt thermodynamics into the total matrix. Thus, their equations

of motion are similar to EcI. (6). The total stiffness matrix is

expressed in Eq. (13),

[K+KT]= LetT ,

where K d represents both the external and thermodynamic (KDDT)

effects. The Kp includes only_the thermodynamic (KppT) effects.

The term Crp is due to thermodynamic effects and represents the
gaseous force exerted on the displacer rod area due to the piston

motion. It is equivalent to KDp T in Eq. (4). The term aT, a

thermodynamic coupling between the displacer motion and the piston

force, denotes KpDa` in Eq. (4). Reference [2] shows that Kp, K d and

the stiffness coefficients ap and c_a` are functions of the displacer rod

area, engine cylinder area, the gas pressure and the expansion and

compression space temperatures. This observation is consistent with

Eq. (4). Thus, values of these parameters may vary for Stirling

engines with different geometric configrrations and operating

temperatures and pressures.

The damping matrix for reference [2] is shown in Eq. (14):

/[od'o ] 04)[c+cz]=
[ 0, Dp J

The damping coefficient, Dd, of Eq. (14) embodies all viscous forces

on the moving gas. The term, Dp, includes the effect of any piston-

connected load. Both D d and Dp include "incidental irreversibilities'.
An example of this is gas spnng hysteresis. There is no explicit

damping coupling term between piston and displacer in Eq. (14).

Reference [2] equates [FE(t)] to zero since there are no external

forces.

The mechanical analog representation of the Stirling engine in Fig. 2

is nearly identical to that used by Das and Bahrami [3]. Also, the

underlying assumptions in references [1] and [3] are similar. Hence,

Eq. (8) represents the system equations for reference [3]. Das and

Bahrami quote reference [1] assertions that the piston-displacer

coupling is weak and can be neglected in a well designed and efficient

engine. They support this by noting the relatively heavier mass of the

load compared to that of the piston, and the relatively dominant

stiffness of the engine gas spring action. However, Das and Bahrami

do not explicitly ignore the coupling terms in formulating the

equations of motion.

The formulation of the thermodynamic stiffness matrix, [KT], and the

dynamic equations by Benvenuto, et al., [4] is similar to that by

Redlich and Berchowitz [2], namely, Eq. (6) with a few exceptions.

Reference [4] more rigorously develops the thermodynamic damping

matrix [Ca. ]. This matrix is shown to be a non-linear function of the

piston and displacer velocities. Both the direct and coupling terms

are included in the formulation.

Cichy, Carlini and Kucharski [5,6] use a formulation similar to Eq.

(7). In their analysis, the [K] and [C] matrices are due entirely to

components external to the thermodynamics. The displacer stiffness

to ground is not explicitly shown by Carlini, et al. This is consistent

with their dynamic representation of the Beale model 10B Stirling

engine. Their system has no external forces. Thus, [FE(t)] is zero.



Theirthermodynamic forcing term, [FT(t)] , is similar to Eq. (15),

which has been rewritten to be consistent with Fig. 2.,

tF (t)l=L0, -ApjLPc(0J (is)

where Pe(t) and Pc(t) are, respectively, the expansion and

compression space pressures. Thus, the thermodynamic forces are

modeled as non-homogeneous terms in the dynamic equations. The

natural frequencies calculated with this model will differ from reality,

since the "stiffness" effects of the working space arc incorporated in

the forcing terms [FT(t)]. The constraint of Eq. (5) on the equations

of motion is not explicitly recognized. This requires equating the

RHS of Eqs. (5) and (15).

The analysis by Chen and Griffin [7] is an extension of their previous

linear harmonic analysis work [8] which models the thermodynamics

of the Stirling cycle. In reference [7] they have coupled the mechanical

dynamic equations of motion with the differential equations

describing the thermodynamic processes. Thus, Eq. (6) is most

similar to their analysis. The major difference in their formulation is

that the order of the matrices [X], [Kr] and [C,r] in Eq. (3) are

expanded to explicitly include thermodynamic and dynamic variables,

as well as losses and adiabatic effects in the thermodynamic cycle.

Literature search reveals that the selected approach for solving the

equations of motion depends on the objective of the author. The

commonly used methods are discussed next.

IlL MEI'HODS OF SOLUTION

Analysts have their preferences for the technique employed in solving

the dynamic equations. Time-domain analysis, either by direct

solution of the differential equations or matrix formulation of the

equations, is commonly used to evaluate the operating frequency, the

displacer-piston displacements and relative phase angles. Other

analysts opt for a combination of time- and frequency-domain

analyses in establishing steady-state system stability and/or criterion

for its occurrence.

l_uch [1] obtains the amplitudes of the piston and the displacer and

their relative phase angles by evoking the Sehmidt sinusoidal motion

for the exerted force, and the piston and displacer responses.

Substitution of the force and responses into the matrix equations of

motion, and subsequent application of Gaussian elimination yields the

solution for the basic equations at the desired frequency.

Redlich and Berchowitz [2] use Taylor series expansion to linearize

the equations of motion about a steady-state operating point. The

resulting equations are Laplace transformed. Nyquist criterion is

applied to the characteristic equation to evaluate the necessary

condition for system stability, and criteria for engine start-up, and

maintenance of piston and displacer resonances.

Das and Bahrami [3] assume a sinusoidal forcing function and, hence,

displacer and piston responses. These are substituted into the

equations of motion which are rewritten in complex exponential form

to determine the piston and displacer steady-state responses.

Dynamic stability of the FPSE is obtained from the system

characteristic equation. Application of Laplace transformation and

Routh's stability criterion gives the impact of parameter variations on

engine stability.

Benvcnuto, et al. [4] approach is to linearize the working gas pressure,

pressures in the gas springs and pressure drop in the heat exchangers.

The result is a system of linear and homogeneous equations of

motion with constant coefficients. These equations are Laplace

transformed into the complex domain. Solution of the polynomial

characteristic equation yields the conditions for stable dynamic
behavior of the FPSE.

Cichy and Carlini [5] and Carlini and Kucharski [6] employ the state-

space formulation of the equations of motion for their analyses.

Reference [5] uses a two-part approach for determining the

thermodynamic parameters. Initially, a spatially uniform sinusoidal

pressure variation is assumed for the working fluid. This is the so-

called "zero-approximation" analysis. The pressure losses between the

compression and expansion volume are included in a subsequent

analysis. This is termed the "first approximation" analysis. For either

type of analysis, the thermodynamic parameters and transient

response are obtained for a unity step input and sinusoidal pressure

input.

Carlini and Kucharski [6] apply the modal transformation and

eigenvalu¢ analysis to obtain the control requirements for, and

parametric effects on the engine dynamic behavior, following both a

step function and harmonic (or sinusoidal) input types of excitation.

Chen and Griffin [7] assume that all system variables are harmonic in

nature. They then reduce the differential equations to a system of 18

homogeneous algebraic equations. These are solved for the operating

frequency by means of a secant-bisection root-finding method. This

method ensures stable convergence in a minimum time. The

homogeneous set of equations is converted to non-homogeneous type

by assuming a value for power piston amplitude. The equation

representing the piston displacement is deleted in the set of

homogeneous equations.

The influence of the piston motion on the remaining equations is

replaced by a forcing term which is proportional to the piston dis-

placement. Standard matrix algebra is used to solve for 17 of the 18

system variables, based on an assumed piston amplitude. A unique

solution for the piston amplitude is found by matching the power

produced by the engine to the load power requirement. The final

solutions are obtained by successive iteration of the above solution

techniques.

IV. CONCLUDING REMARKS

The primary objective of the reviewed dynamic analyses is to

determine the dynamic behavior of FPSE systems. Several authors

formulate their analyses such that system stability and parametric

constraints for stable operation may be evaluated. However, with few

exceptions, stability has been defined in the classic sense, i.e., with

respect to static equilibrium, rather than "periodic" stability in which

the system converges to a stable limit cycle.



Frequency domain analysis in the form of Laplace Transformation,

with inverse transformation for time-domain response, has been

effective in computing the basic thermodynamic parameters.

V. RECOMMENDATIONS

The dynamic behavior and stability of FPSEs depend on the total

system, including the thermodynamics and load. Therefore, a

complete analysis should incorporate detailed representations of both

the thermodynamics, dynamics and load. In particular, for engines

with a connected linear alternator, ihe model should include the

electrical dynamics of the alternator and electrical load. Also, the

thermodynamic model should account for both adiabatic effects and

major lo_ses directly affecting the working space pressure amplitude

and phase.

The thermodynamic stiffness and damping coefficients, including the

coupling terms, should be included in the homogeneous equation to

yield a more accurate prediction of the system behavior. Thus, Eq (6)

is recommended since all first.order dynamic effects are satisfied.

Further, the use of Eqs (3) and (4), with non-linearities included in

the matrices, for describing the thermodynamic system, is deemed

sufficient. However, including the detailed thermodynamic equations

with the dynamic analysis [7] is appropriate where thermodynamic

performance is the primary concern.
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The major source of self-excitation is contained in the stiffness matrix,

v,.hile the major stabilizing influence is contained in the damping

matrix. Both matrices can be shown to contain non-linear

coefficients. Better understanding of the nature of various non-linear Symbols:

effects and their influence on system behavior is needed. Inclusion

of the non-linearities should produce more realistic results. Although A

approximate, linearized solutions to the non-linear equations of C, D

motion can yield useful results, detailed solutions will require FPSE

numerical analysis. K

P

Frequency-domain analysis, using a state-space technique, facilitates

a detailed sensitivity analysis of the effects of parameter variations on

the engine dynamic behavior. This is useful, particularly during the

engine design stage, in establishing acceptable stability margins.

Only a few of the analyses [2,7,9] have been compared to

experimental results. Experimental validation of the dynamic analysis

is recommended to enhance the analytic models and increase

confidence in their predictive capability.

In contrast to dynamic stability, the transient response of the FPSE

system will need to be evaluated by use of time domain analysis.

Transient response, a potential operating mode of FPSE, has not yet

received wide-spread attention.
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